Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigated the algorithms and physical models currently applied to remote sensing of the mesosphere and lower thermosphere (MLT) using space-based observations of the CO2 15 µm emission. We show that the measured 15 µm radiation constrains the population of excited CO2 vibrational levels and the 15 µm radiative flux divergence in the MLT, but not the 15 µm cooling. Moreover, the models of the non-local thermodynamic (non-LTE) excitation of CO2 in the MLT contradict the laboratory studies of this excitation. We present a new model of the non-LTE in CO2 that is both consistent with the observed CO2 15 µm radiation and provides the CO2 cooling of the MLT, which aligns with the laboratory-measured rate coefficient kO of the CO2 vibrational excitation by collisions with O(3P) atoms. Its application shows that the current non-LTE models dramatically overestimate this cooling. Even for the low laboratory-confirmed rate coefficient of the CO2-O(3P) excitation, kO=1.5×10−12 s−1cm−3, excess cooling is equal or higher than the true cooling, reaches a value of 10 K/day, and is maximized in the mesosphere region around 100 km—a region which is very sensitive to any changes in the heat balance. For kO=3.0×10−12 s−1cm−3, which is currently used in the general circulation models of the MLT, excess cooling reaches 25–30 K/day. The results of this study contradict the widely held belief that the 15 µm CO2 emission is the primary cooling mechanism of the middle and upper atmospheres of Earth, Venus, and Mars. A significant reduction in 15 µm cooling will have a major impact on both the modeling of the current MLT and the estimation of its future changes due to increasing CO2. It also strongly influences the interpretation of MLT 15 µm emission observations and provides new insights into the role of this emission in the middle and upper atmospheres of Mars, Venus, and other extraterrestrial planets.more » « lessFree, publicly-accessible full text available June 1, 2026
-
We investigated the algorithms and physical models currently applied to remote sensing of the mesosphere and lower thermosphere (MLT) using space-based observations of the CO2 15 µm emission. We show that the measured 15 µm radiation constrains the population of excited CO2 vibrational levels and the 15 µm radiative flux divergence in the MLT, but not the 15 µm cooling. Moreover, the models of the non-local thermodynamic (non-LTE) excitation of CO2 in the MLT contradict the laboratory studies of this excitation. We present a new model of the non-LTE in CO2 that is both consistent with the observed CO2 15 µm radiation and provides the CO2 cooling of the MLT, which aligns with the laboratory-measured rate coefficient k O of the CO2 vibrational excitation by collisions with O(3P) atoms. Its application shows that the current non-LTE models dramatically overestimate this cooling. Even for the low laboratory-confirmed rate coefficient of the CO2-O(3P) excitation, k O = 1.5 × 10−12 s −1 cm−3 , excess cooling is equal or higher than the true cooling, reaches a value of 10 K/day, and is maximized in the mesosphere region around 100 km—a region which is very sensitive to any changes in the heat balance. For k O = 3.0 × 10−12 s −1 cm−3 , which is currently used in the general circulation models of the MLT, excess cooling reaches 25–30 K/day. The results of this study contradict the widely held belief that the 15 µm CO2 emission is the primary cooling mechanism of the middle and upper atmospheres of Earth, Venus, and Mars. A significant reduction in 15 µm cooling will have a major impact on both the modeling of the current MLT and the estimation of its future changes due to increasing CO2. It also strongly influences the interpretation of MLT 15 µm emission observations and provides new insights into the role of this emission in the middle and upper atmospheres of Mars, Venus, and other extraterrestrial planets.more » « lessFree, publicly-accessible full text available May 29, 2026
-
Abstract. Clouds warm the surface in the longwave (LW), and this warming effect can be quantified through the surface LW cloud radiativeeffect (CRE). The global surface LW CRE has been estimated over more than2 decades using space-based radiometers (2000–2021) and over the 5-year period ending in 2011 using the combination of radar, lidar and space-basedradiometers. Previous work comparing these two types of retrievals has shown that the radiometer-based cloud amount has some bias over icy surfaces. Here we propose new estimates of the global surface LW CRE from space-based lidarobservations over the 2008–2020 time period. We show from 1D atmosphericcolumn radiative transfer calculations that surface LW CRE linearly decreases with increasing cloud altitude. These computations allow us toestablish simple parameterizations between surface LW CRE and five cloud properties that are well observed by the Cloud-Aerosol Lidar and InfraredPathfinder Satellite Observations (CALIPSO) space-based lidar: opaque cloud cover and altitude and thin cloud cover, altitude, and emissivity. We evaluate this new surface LWCRE–LIDAR product by comparing it to existingsatellite-derived products globally on instantaneous collocated data atfootprint scale and on global averages as well as to ground-based observations at specific locations. This evaluation shows good correlationsbetween this new product and other datasets. Our estimate appears to be animprovement over others as it appropriately captures the annual variabilityof the surface LW CRE over bright polar surfaces and it provides a datasetmore than 13 years long.more » « less
An official website of the United States government
